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Abstract Mass action type deterministic kinetic models of ion channels are usually
constructed in such a way as to obey the principle of detailed balance (or, microscopic
reversibility) for two reasons: first, the authors aspire to have models harmonizing with
thermodynamics, second, the conditions to ensure detailed balance reduce the number
of reaction rate coefficients to be measured. We investigate a series of ion channel
models which are asserted to obey detailed balance, however, these models violate
mass conservation and in their case only the necessary conditions (the so-called cir-
cuit conditions) are taken into account. We show that ion channel models have a very
specific structure which makes the consequences true in spite of the imprecise argu-
ments. First, we transform the models into mass conserving ones, second, we show
that the full set of conditions ensuring detailed balance (formulated by Feinberg) leads
to the same relations for the reaction rate constants in these special cases, both for the
original models and the transformed ones.
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1 Introduction

1.1 Detailed balancing or microscopic reversibility

At the beginning of the 20th century it was Wegscheider [22] who gave the formal

kinetic example A
k1�

k−1
B 2A

k2�
k−2

A + B to show that in some cases the existence of

a positive stationary state alone does not imply the equality of all the individual for-
ward and backward reaction rates in equilibrium: a relation ( k1

k−1
= k2

k−2
) should hold

between the reaction rate coefficients to ensure this. Equalities of this kind will be
called (and later exactly defined) as spanning forest conditions below. Let us empha-
size that violation of this equality does not exclude the existence of a positive stationary
state; it exists and it is unique for all values of the reaction rate coefficients, see the
details in Sect. 2.4.

A similar statement holds for the reversible triangle reaction in Fig. 1. The neces-
sary and sufficient condition for the existence of such a positive stationary state for
which all the reaction steps have the same rate in the forward and backward direction is
k1k2k3 = k−1k−2k−3. Equalities of this kind will be called (and later exactly defined)
as circuit conditions below. (Let us mention that similar conditions were derived by
Kolmogoroff [14] for stochastic processes.) Again, violation of this equality does not
exclude the existence of a positive stationary state; it exists and is unique for all values
of the reaction rate coefficients, see the details in Sect. 2.4.

A quarter of a century after Wegscheider the authors Fowler and Milne [10] formu-
lated in a very vague form a general principle called the principle of detailed balance
stating that in real thermodynamic equilibrium all the subprocesses (whatever they
mean) should be in dynamic equilibrium separately in such a way that they do not
stop but they proceed with the same velocity in both directions. Obviously, this also
means that time is reversible at equilibrium, that is why this property may also be
called microscopic reversibility.

A relatively complete summary of the early developments was given by Tolman
[19], but see also [1–3,23].
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Fig. 1 a The Wegscheider reaction. b The triangle reaction
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The modern formulation of the principle accepted by IUPAC [11] essentially means
the same: “The principle of microscopic reversibility at equilibrium states that, in a
system at equilibrium, any molecular process and the reverse of that process occur, on
the average, at the same rate.”

Neither the above document nor the present authors assert that the principle should
hold without any further assumptions; for us it is an important hypothesis the fulfilment
of which should be checked individually in different models.

It turned out that in the case of chemical reactions this general principle can only
hold if both the spanning tree conditions and the circuit conditions are fulfilled. How-
ever, it became a general belief among people dealing with reaction kinetics that the
circuit conditions alone are not only necessary but also sufficient for all kinds of reac-
tions: Wegscheider’s example proving the contrary was not known well enough. Vlad
and Ross [20] drew the conclusions from the Wegscheider example in full generality,
but it was Feinberg [9] who gave the definitive solution of the problem in the area of
formal kinetics: he clearly formulated, proved and applied the two easy-to-deal-with
sets of conditions which together make up a necessary and sufficient condition of
detailed balance (for the case of mass action kinetics). In other words, he completed
the known necessary condition (the circuit conditions) with another condition (the
spanning forest conditions) making this sufficient, as well.

The reason why the false belief is widespread is that in case of reactions with defi-
ciency zero the circuit conditions alone are also sufficient not only necessary, and most
textbook examples have deficiency zero.

1.2 Ion channel models

Recent papers on formal kinetic models of ion channel gating show that people in this
field think that the principle of detailed balance or microscopic reversibility should
hold. (However, some authors do not consider the principle of microscopic reversibil-
ity indispensable, e. g. Naundorf et al. [17, Supplementary Notes 2, Fig. 3SI(a), page
4] provides a channel model which is not even reversible, let alone detailed balanced.)
This may be supported either by a theoretical argument: they should obey the laws
of thermodynamics, or by a practical one: if the principle holds one should measure
fewer reaction rate coefficients because one also has the constraints implied by the
principle. The second argument seems to be the more important one in the papers
by Colquhoun et al. [4,6]. However, the principle is applied in an imprecise way:
first, only the necessary part consisting of the circuit conditions is applied, second,
the models are formulated in a way that they do not obey the principle of mass con-
servation. In the present paper we transform the models into mass conserving ones,
and apply the full set of necessary and sufficient conditions. Our main result is that in
classes of models including all the known ion channel examples are compartmental
models, therefore they have zero deficiency at the beginning, and being transformed
into a mass conserving model they have no circuits, therefore one has only to test the
spanning forest conditions. It is not less interesting that the spanning forest conditions
obtained for the transformed models are literally the same as the circuit conditions for
the original models.
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1.3 Stochastic models

So far we had in mind only deterministic models (surely not speaking of the general but
vague formulation of Fowler and Milne). Turning to stochastic models one possible
approach is to check the fulfilment of microscopic reversibility in the following way.
Let us suppose we have some measurements on a process, and present the data with
reversed time, finally use a statistical test to see if there is any difference. This is an
absolutely correct approach and has also been used in the field of channel modeling
[18], see also [21].

1.4 Outline

The structure of our paper is as follows. Section 2 gives a short summary of the defini-
tions used and presents Feinberg’s theorem. In Sect. 3 some usual ion channel models
are transformed into realistic models with mass conservation and with the help of a
lemma it is shown that in these special cases the circuit conditions for the origial sys-
tems and the spanning forest conditions for the transformed systems lead to exactly the
same requirements. The question of the number of free parameters is also discussed
here. Finally an outlook and discussion follows in Sect. 4. The formal proof of our
main result has been relegated to an Appendix.

Let us also mention that parts of our investigations has been presented in a short,
nonrigorous form in [15].

2 Tools to be used

2.1 Ion channels

There is a difference in electric potential between the interior of cells and the interstitial
liquid. An essential part of the system controlling the size of this potential difference
is the system of ion channels: pores made up from proteins in the membranes through
which different ions may be transported via active and passive transport thereby chang-
ing the potential difference in an appropriate way. The models of these ion channels
are usually described in terms of formal reaction kinetics, thus we have to present
these notions first, then we shall be in the position to present a few alternative models
of ion channels.

2.2 Basic definitions of formal kinetics

Let us consider the reversible reaction

M∑

m=1

α(m, p)X (m) �
M∑

m=1

β(m, p)X (m) (p = 1, 2, . . . , P) (1)
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with M ∈ N chemical species: X (1), X (2), . . . , X (M); P ∈ N pairs of reaction
steps, α(m, p), β(m, p) ∈ N0 (m = 1, 2, . . . , M; p = 1, 2, . . . , P) stoichiometric
coefficients or molecularities, and suppose its deterministic model

c′
m(t) = fm(c(t)) :=

P∑

p=1

(β(m, p) − α(m, p))(w+p(c(t)) − w−p(c(t))) (2)

cm(0) = cm0 ∈ R
+
0 (m = 1, 2, . . . , M) (3)

describing the time evolution of the concentration versus time functions

t �→ cm(t) := [X (m)](t)

of the species—is based on mass action type kinetics:

w+p(c) := k+pcα(·,p) := k+p

M∏

μ=1

cα(μ,p)
μ (4)

w−p(c) := k−pcβ(·,p) := k−p

M∏

μ=1

cβ(μ,p)
μ (p = 1, 2, . . . , P). (5)

[(2) is also called the induced kinetic differential equation of the reaction (1).] The
number of complexes is the number of different complex vectors among α(·, p) and
β(·, p), i.e. it is the cardinality of the set

{α(·, p); p = 1, 2, . . . , P} ∪ {β(·, p); p = 1, 2, . . . , P}

and it is denoted by N . The Feinberg–Horn–Jackson graph (or, FHJ-graph, for short)
of the reaction is obtained if one writes down all the complex vectors [or simply the
complexes, the formal linear combinations on both sides of (1)] exactly once and
connects two complexes with an edge (or two different edges pointing into opposite
directions) if there is a reaction step taking place between them. Let us denote the
number of connected components of this graph by L .

The stoichiometric space is the linear subspace of R
M generated by the reaction

vectors: span{β(·, p) − α(·, p); p = 1, 2, . . . , P}; its dimension is denoted by S.

Finally, the nonnegative integer δ := N − L − S is the deficiency of the reaction (1).
Examples to show the meaning of the definitions follow.

Example 1 (Simple bimolecular reaction) In the simple reversible bimolecular reac-
tion A + B � C we have M = 3, P = 1; X (1) = A, X (2) = B, X (3) = C; and
the complexes are A + B and C, thus the corresponding complex vectors are (1, 1, 0)

and (0, 0, 1). As N = 2, L = 1, S = 1; the deficiency of the reaction is 0.

Example 2 (Triangle reaction) In the triangle reaction (Fig. 1) we have M = 3, P =
3; X (1) = A, X (2) = B, X (3) = C; and the complexes are A, B and C, thus the
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corresponding complex vectors are (1, 0, 0), (0, 1, 0) and (0, 0, 1). As N = 3, L =
1, S = 2; the deficiency of the reaction is 0.

Example 3 (Wegscheider) In the Wegscheider reaction (Fig. 1) we have M = 2, P =
2; X (1) = A, X (2) = B; and the complexes are A, B, 2A and A + B, thus the cor-
responding complex vectors are (1, 0), (0, 1), (2, 0) and (1, 1); therefore the reaction
vectors are (1,−1) and (−1, 1). As N = 4, L = 2, S = 1; the deficiency of the
reaction is 1.

Let us mention here that it is a boring task with many possibilities of mistake to cal-
culate the characteristic quantities of reactions and this is one of the reasons why a
program package ReactionKinetics.m is being developed in Mathematica. The
second example may be prepared for the present purposes as follows.

In[1]:= < < ReactionKinetics`
In[2]:= triangle = {A�B�C�A};
In[3]:= Column[ReactionsData[triangle]]

species→{A,B,C}
M →3
externalspecies→{ }
E →0
complexes→{A,B,C}

Out[3]= reactionsteps→ {A→B, B→A, B→C, C→B, C→A, A→C}
R →6
variables→ {cA,cB,cC }

α →
⎛

⎝
1 0 0 0 0 1
0 1 1 0 0 0
0 0 0 1 1 0

⎞

⎠

β →
⎛

⎝
0 1 0 0 1 0
1 0 0 1 0 0
0 0 1 0 0 1

⎞

⎠

γ →
⎛

⎝
−1 1 0 0 1 −1

1 −1 −1 1 0 0
0 0 1 −1 −1 1

⎞

⎠

In[4]:= ShowFHJGraph[triangle, {k1, k−1, k2, k−2, k3, k−3 },
VertexLabeling → True, DirectedEdges → True]]

Other

uses of the package are described in the work mentioned above.

2.3 Models of ion channels

In the models of ion channels the relevant species are receptors and molecules modify-
ing the operation of receptors so as to change the sizes of the pores, thereby decreasing
or increasing the quantity of ions flowing through the channels. Altogether there are
several hundreds of different types of ion channels in living cells.

One possible model, see Fig. 2, contains receptors, transmitters, and receptor trans-
mitter complexes each with a different conformation having different ion-conductance,
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Fig. 2 The Érdi–Ropolyi model with four transmitters and three different states of the transmitter–receptor
complex

Fig. 3 A model by De Young
and Keizer

k4c
c k5

k 1

k 4

k5c

k3p

k 5
k 4

k3p

k4c

k 5

k1p

k1p

k5c
k2ck 5

k2c

k

k 2

k3

k 3

k5c

k 2

k 3

S000

S001

S011

S010

S100

S110

S111

S101

and these conformations correspond to states in which the channels are between the
open and closed states [8].

Another approach, see Fig. 3, might involve multiple types of modifying molecules
and complexes, again representing different states of the channels [7]. These are the
models we are especially interested in.

Ion channel models are usually required to fulfil the principle of detailed balance
both from theoretical and practical points of view. First, thermodynamics is said to
require the principle to hold, second, if this principle holds then the number of reac-
tion rate constants to be measured are reduced. Let us turn to the formal definition of
detailed balance in the framework given in Sect. 2.2.

2.4 Detailed balance: definition and the naïve approach

Within the model exactly defined above we can formulate the property of being detailed
balanced [13]. Consider the reaction (1) endowed with mass action kinetics.

Definition 1 If c∗ ∈ (R+)M is such that

kpc∗α(·,p) = k−pc∗β(·,p) (p = 1, 2, . . . , P), (6)

then reaction (1) is said to be detailed balanced at the stationary point c∗. If the
reaction is detailed balanced at all its positive stationary points, then it is detailed
balanced.

We are especially interested in reactions which are detailed balanced for some choices
of the reaction rate constants, and also in the restrictions upon the rate constants which
ensure detailed balancing.
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Example 4 (Simple bimolecular reaction) The deterministic model of the reaction

A + B
k1�

k−1
C according to Sect. 2.2 can be seen to be (in accord with the usual formu-

lation)

a′ = −k1ab + k−1c b′ = −k1ab + k−1c c′ = k1ab − k−1c
a(0) = a0 b(0) = b0 c(0) = c0

which simplifies to

a′(t) = −k1a(t)(a(t) − a0 + b0) + k−1(−a(t) + a0 + c0)

= −k1a(t)2 + (k1a0 − k1b0 − k−1)a(t) + k−1(a0 + c0)

= −k−1(K a(t)2 − (K (a0 − b0) − 1)a(t) − a0 − c0). (7)

If the reaction starts from nonnegative initial concentrations a0, b0, c0 for which a0 +
c0 > 0, the unique positive (relatively asymptotically stable) equilibrium concentra-
tion

a∗ = 1

2K
(−1 + K (a0 − b0) + r)

b∗ = 1 + K (a0 + b0 + 2c0) − r

K (−1 + K (a0 − b0) + r)

c∗ = 1

2K
(1 + K (a0 + b0 + 2c0) − r)

where K := k1

k−1
, r :=

√
1 + 2K (a0 + b0 + 2c0) + K 2(a0 − b0)2

will be attained. The reaction is detailed balanced at this vector of stationary concen-
trations for all values of the reaction rate coefficients, i. e. k1a∗b∗ = k−1c∗ always
holds.

Example 5 (Triangle reaction) The induced kinetic differential equation of the revers-
ible triangle reaction being

a′ = −k1a + k−1b − k−3a + k3c

b′ = k1a − k−1b − k2b + k−2c

c′ = k2b − k−2c + k−3a − k3c

together with the mass conservation relation

a(t) + b(t) + c(t) = a0 + b0 + b0 =: m

imply that the unique, relatively asymptotically stable vector of positive stationary
concentrations—if at least one of the initial concentrations a0, b0, c0 is positive— are
as follows.
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a∗ = (k−2k−1 + (k−1 + k2)k3)
m

d
(8)

b∗ = (k−3k−2 + (k−2 + k3)k1)
m

d
(9)

c∗ = (k−3k−1 + (k−3 + k1)k2)
m

d
(10)

with d := k−2(k−1 + k1) + k1k2 + k−3(k−2 + k−1 + k2) + k−1k3 + k1k3 + k2k3.

The reaction is detailed balanced at this vector of stationary concentrations—i. e.

k1a∗ = k−1b∗ k2b∗ = k−2c∗ k3c∗ = k−3a∗

if and only if

k1k2k3 = k−1k−2k−3 (11)

holds.

Example 6 (Wegscheider) The induced kinetic differential equation of the Wegsche-
ider reaction being

a′ = −k1a + k−1b − k2a2 + k−2ab

b′ = k1a − k−1b + k2a2 − k−2ab

which simplifies to

a′ = −k1a + k−1(a0 + b0 − a) − k2a2 + k−2a(a0 + b0 − a)

= −(k2 + k−2)a
2 − (k1 + k−1 − k−2(a0 + b0))a + k−1(a0 + b0).

together with the mass conservation relation

a(t) + b(t) = a0 + b0 =: m

imply that—unless all the initial concentrations are zero—the unique positive (rela-
tively asymptotically stable) stationary concentration vector is as follows.

a∗ = k−1 + k1 − k−2m − r

−2(k−2 + k2)
(12)

b∗ = k−1 + k1 + k−2m + 2k2m − r

2(k−2 + k2)
(13)

with r :=
√

(k−1 + k1 − k−2m)2 + 4k−1m(k−2 + k2). (14)

The reaction is detailed balanced at this vector of stationary concentrations—i. e.

k1a∗ = k−1b∗, k2a∗b∗ = k−2b2∗
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if and only if

k1

k−1
= k2

k−2
(15)

holds.

2.5 The necessary and sufficient condition of detailed balancing

The necessary and sufficient conditions are formulated in the following way in [9].
Consider the reaction (1) endowed with mass action kinetics.

First suppose that we have chosen an arbitrary spanning forest for the FHJ-graph
of the network. It is possible to find a set of P − (N − L) independent circuits induced
by the choice of the spanning forest. For each of these circuits we write an equation
which asserts that the product of the rate constants in the clockwise direction and the
counterclockwise direction is equal. Thus we have P − (N − L) equations: the circuit
conditions.

Next, these equations are supplemented with the δ spanning forest conditions as fol-
lows. Suppose that the edges of the spanning forest has been given an orientation. Then
there are δ independent nontrivial solutions to the vector equation

∑
(i, j) ai j vi j = 0

where the sum is taken for all reaction steps in the oriented spanning forest and vi j is
the corresponding reaction step vector. With these ai j coefficients the spanning forest
conditions are

∏
k

ai j
i j =

∏
k

ai j
j i , (16)

where ki j are the corresponding rate coefficients.
With all these the widely-accepted necessary conditions (the circuit conditions) are

complemented with the spanning forest conditions to form a set of necessary and suffi-
cient conditions for detailed balancing in mass action systems of arbitrary complexity.

Theorem 1 (Feinberg) The reaction (1) is detailed balanced for all those choices of
the reaction rate constants which satisfy the P − (N − L) circuit conditions and the
δ spanning forest conditions.

Remark 1 The circuit conditions are called spanning tree method in [6].

Remark 2 There are three interesting special cases.

1. For a reversible mass action system which has a deficiency of zero, the circuit
conditions alone become necessary and sufficient for detailed balancing. The
reason why the circuit conditions were generally accepted as sufficient as well,
is that a large majority of models are of zero deficiency. This case is exemplified
by the triangle reaction.

2. For networks with no nontrivial circuits, that is, in which there are just N − L
reaction pairs and so P − (N − L) = 0, the circuit conditions are vacuous.
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Therefore, the spanning forest conditions alone are necessary and sufficient for
detailed balancing. The example by Wegscheider belongs to this category.

3. Finally, if a reversible network is circuitless and has a deficiency of zero, both the
circuit conditions and the spanning forest conditions are vacuous. The system is
detailed balanced (or fulfils the principle of microscopic reversibility), regardless
of the values of the rate constants. Such is a compartmental system with no circles
in the FHJ-graph, the simple bimolecular reaction or the érdi–Ropolyi model.

3 The main result

3.1 Our strategy

Let us denote by M, P, δ, N , L , S, K and M ′, P ′, δ′, N ′, L ′, S′, K ′ the number of
species, the number of (half) reaction steps, the deficiency, the number of complexes,
the number of linkage classes, the dimension of the stoichiometric space (i.e., the num-
ber of independent reaction steps) and the number of independent cycles respectively
in the original and in the transformed system.

All the investigated original (not mass-conserving) ion channel models are formally
compartmental systems which means that each complex consists of a single species
and all species are different. Therefore all these models are of deficiency zero. Thus,
in order to check detailed balancing it is enough to test the circuit conditions, and this
is what the authors in [4,6] do.

What we propose is to transform these models into a mass-conserving model in
such a way as to reflect the same physical reality. The transformed models have the
following properties.

1. There is no cycle in the transformed system.
2. S = S′
3. N ′ − L ′ − S′ = δ′ = K
4. The circuit conditions in the original system are equivalent to the spanning forest

conditions in the transformed system.

This transformation is constructed in the Appendix for a large class of systems—
those with rectangular grids as FHJ-graphs—containing all the special cases we have
met up to now.

3.2 Lemma

Consider a directed graph whose edges and vertices are the edges and vertices of a
planar rectangular grid. Suppose that the graph has n vertices and that to each vertex j
we assign a y j vector in Rn+2 such that these vertex vectors are linearly independent.
Let c1 and c2 be vectors in Rn+2 such that they are linearly independent of each other
and of each y j . Let us denote by ei j the directed edge of the graph from vertex i to
vertex j and to each ei j edge let us assign the vi j = y j − yi vector. Let us define the
ui j vectors in the following way. If ei j is directed in the positive or negative direction
in relation to the x axis then ui j := vi j − c1 or ui j := vi j + c1, respectively. Similarly,
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Fig. 4 Rectangular grid with directed edges

if ei j is directed in the positive or negative direction in relation to the y axis then
ui j := vi j − c2 or ui j := vi j + c2, respectively (Fig. 4b). Fig. 4a is only to show the
transformations. Let us denote by span{vi j } the subspace generated by the vi j vectors.

Lemma 1 Under these conditions the following statements hold.

1. Along each directed circle in the graph,
∑

ai j vi j = ∑
ai j ui j = 0 where ai j := 1

if the edges of the graph and the circle are directed in the same way and ai j := −1
otherwise.

2. The dimension of span{vi j } and span{ui j } is n − 1.

Proof 1. Since the vi j vectors are the differences of the corresponding vertex vec-
tors, it is obvious that along a directed circle, the sum of the vi j vectors is 0.
It is enough to show that the c1 and c2 vectors disappear in the sum of the ui j

vectors. In order to see this, first assume that along a directed circle we change
the direction of the ei j edges so that each is directed clockwise. In this case it
is obvious that the sum of the c1 and c2 vectors is zero since the number of the
“+c1” and “+c2” vectors is equal to the number of the “−c1” and “−c2” vectors,
respectively. Then, changing the original directions back, the sign of the c1 and
c2 vectors changes twice and thus they will not appear in the sum.

2. Let us choose a spanning tree in the graph consisting of n − 1 of the ei j edges.
Then the corresponding vi j vectors are linearly independent and since the c1 and
c2 vectors are independent of them, the corresponding ui j vectors are also linearly
independent.

�	
Remark 3 It is trivial that the statements of the lemma remain true if either c1 or c2 is
the zero vector, or, if the graph contains edges that are not part of a circle.

Remark 4 The statements of the lemma are also true for graphs consisting of k-dimen-
sional grids (k ≥ 3), see Figs. 7 and 8a, b as an illustration for the three-dimensional
case.
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δ = 2
, N , L , S

, K = 0

Fig. 5 A model for α1β glycine channels where A represents an agonist, and R, F and F∗ denotes the
resting states, flipped states and open states of the receptor, respectively

3.3 Examples

In the next three examples, the left side of the figure shows the original system and
the right side of the figure shows the transformed system with an oriented spanning
forest. Both systems are reversible, the arrows show a direction needed to write down
the spanning forest conditions. The choice of the numbering of the species as well as
the direction of the reaction vectors is arbitrary but in both systems they are chosen
correspondingly.

Example 7 The system in Fig. 5 can be found in [4]. The meaning of the species is as
follows: The core of the system is obviously a rectangle, the additional parts do not
mean an extra problem as the reader can easily verify it. The original system consists
of M = 10 species, N = 10 complexes, L = 1 linkage class and it contains two
circles while the transformed system contains one more species, A, there are N ′ = 14
complexes, L ′ = 3 linkage classes and it is circuitless. In order to compare these
systems easily, in both cases let us number the species in the same way and let A be
the last one, that is,

X (1) := R, X (2) := AR, X (3) := A2 R, . . . , X (10) := A3 F∗, X (11) := A.

Let us assign a vector yi ∈ R
11 to the i th species so that yi, j = 1 if i = j and yi, j = 0

if i �= j where i, j = 1, . . . , 11 and let a := y11.
The complex vectors in Fig. 5a are y1, y2, . . . , y10 and the corresponding reac-

tion vectors are v21 = y1 − y2, v23 = y3 − y2, . . . , v7,10 = y10 − y7. The dimen-
sion of span{v21, v23, . . . , v7,10} is S = 9. Thus, the deficiency of this system is
δ = N − L − S = 0. It means that the circuit conditions are necessary and sufficient
for detailed balancing. The circuit conditions along circles 2365 and 4367 are

k23k36k65k52 = k32k25k56k63

k43k36k67k74 = k34k47k76k63

The complexes in Fig. 5b are numbered as 1, 2, 2a, . . . , 10 and the complex vectors
are y′

1 = y1 + a, y′
2 = y2, y′

2a = y2 + a, . . . , y′
10 = y10. The reaction vectors are
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(b)M = 11 , N = 11 , L = 1 ,
S = 10 ,δ = 0 , K = 4

M = 13 , N = 22 , L = 8 ,
S = 10 ,δ = 4 , K = 0

Fig. 6 A model containing two binding sites for the agonists A and G

u21 = v21+a, u23 = v23−a, u43 = v43+a, u52 = v52, u36 = v36, u74 = v74, u65 =
v65+a, u67 = v67−a, u58 = v58, u96 = v96, u7,10 = v7,10. The lemma can be applied
to this system with c1 = a and c2 = 0. The dimension of span {u21, u23, . . . , u7,10} is
also S′ = 9. Thus, the deficiency is δ′ = 14−3−9 = 2. Since this system is circuitless,
there are two equations according to the spanning forest conditions that ensure detailed
balancing. Along the circles ‘2365’ and ‘3476’ in both systems, v23+v36+v65+v52 =
u23 + u36 + u65 + u52 = 0 and v43 + v36 + v67 + v74 = u43 + u36 + u67 + u74 = 0.
Since each coefficient of the ui j vectors in the above linear combinations is 1,

k′
23k′

36k′
65k′

52 = k′
32k′

63k′
56k′

25

k′
43k′

36k′
67k′

74 = k′
34k′

63k′
76k′

47

which are equivalent to the circuit conditions.

Remark 5 Let us observe that the equivalence of the circuit conditions in the original
system and the spanning forest conditions in the transformed system follows from
the first statement of the lemma, that is, along each circle the vi j vectors and the cor-
respondingly chosen ui j vectors satisfy the same linear equalities. If, say, instead of
circle ‘4367’ we choose circle ‘234765’ then v23 − v43 − v74 − v67 + v65 + v52 =
u23−u43−u74−u67+u65+u52 = 0. The corresponding circuit condition in Fig. 5a is

k23k34k47k76k65k52 = k32k25k56k67k74k43

and the equivalent equation from the spanning forest condition in Fig. 5b is
k′

23(k
′
43)

−1(k′
74)

−1(k′
67)

−1k′
65k′

52 = k′
32(k

′
34)

−1(k′
47)

−1(k′
76)

−1k′
56k′

25.

Example 8 The system in Fig. 6 can be found in [16]. Figure 6a shows the original
system where there are M = 11 species and Fig. 6b shows the transformed system
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(b)M = 18 , N = 18 , L = 1 , S = 17 ,
δ = 0 , K = 13

M = 20 , N = 36 , L = 6 , S = 17 ,
δ = 13 , K = 0

Fig. 7 A model with two binding sites for the agonists A and B

where there are two more species, A and G. Again, let us number the species in the
same way as in Fig. 5 and let A and G be the last two, that is,

X (1) := R, X (2) := R A, . . . , X (11) := G2 R′ A2, X (12) := A, X (13) := G.

Let us assign a vector yi ∈ R
13 to the i th species so that yi, j = 1 if i = j and

yi, j = 0 if i �= j where i, j = 1, . . . , 13. With a := y12 and g := y13, the correspond-
ing reaction vectors of the transformed system are u12 = v12−a, u32 = v32+a, u41 =
v41 + g, u25 = v25 − g, …, u98 = v98 + a, u9,10 = v9,10, u9,11 = v9,11. Thus, the
lemma can be applied so that c1 = a, c2 = g and the x and y axes are directed in the
‘147’ and ‘123’ direction, respectively.

Example 9 The system in Fig. 7 can be found in [5]. Again, let us number the species
as shown in Fig. 7a, that is

X (1) := F∗, X (2) := AF∗, . . . , X (18) := B2 R, X (19) := A, X (20) := B.

and let us assign a vector yi ∈ R
20 to the i th species so that yi, j = 1 if i = j and

yi, j = 0 if i �= j where i, j = 1, . . . , 20. Similarly as in the previous two cases, let
vi j and ui j respectively denote the reaction vectors in the original and in the trans-
formed system (these are the differences of the corresponding complex vectors) and
let a := y19 and b := y20. Then, ui j = vi j − a, ui j = vi j − b or ui j = vi j if ui j

and vi j correspond to an edge in the graph parallel to the ’12’, ’14’ or ’17’ directions,
respectively. The lemma can be used here with c1 = a, c2 = b and c3 = 0.
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(d) M = 9 , N = 14 , L = 3 ,
S = 7,δ ,δ = 4 , K = 1

Fig. 8 One receptor with three binding sites

Example 10 Consider the system in Fig. 8a where there is one receptor with three
binding sites, and the different states of the sites are denoted by Si jk . The next three
figures show three possible transformation of this system in the following cases. Figure
8b shows the transformed versions of the system in Fig. 8a in the case when there
are three different atoms, A, B, C , binding to the three sites. Figure 8c shows the
transformed version of the system in Fig. 8a in the case when there are two differ-
ent atoms, A, B, binding to the three sites. This is the De Young and Keizer model,
and again, the transformed system does not contain a circle. In the interesting the-
oretical case when there is only one atom, A, binding to each of the three sites,
the transformed system contains a circle, this can be seen in Fig. 8c. It can be ver-
ified easily that the five circuit conditions in the original system are equivalent to
the five spanning forest conditions in the systems in Fig. 8b, c and are also equiva-
lent to the four spanning forest conditions and one circuit condition in the system in
Fig. 8d.
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3.4 On the number of free parameters

We would also like to make some comments on one of the statements in Appendix 2
of [6]. According to this, the number of free parameters can be determined as follows.
Suppose that we have a system with

• N complexes,
• R rate coefficients (as parameters),
• and C constraints (the sum of the number of the microscopic reversibility con-

straints and the number of arbitrary constraints—independent of the microscopic
reversibility constraints and of each other—to be imposed on some of the rate
coefficients).

The number of free parameters will then be equal to R − �, where � is the rank of an
C × N matrix, A.

Recall from [9] that a reversible mass action system is detailed balanced if and only
if the rate constants satisfy the P −(N −L) circuit conditions and the δ spanning forest
conditions where the system has P reaction pairs, N complexes, L linkage classes,
and S is the rank of the stoichiometric space, and δ is the deficiency of the network.
Using these notations, it can be written that the number of unknowns R equals 2P ,
and the number of independent constraints C equals

Q + (P − (N − L)) + δ = Q + P − S, (17)

where Q denotes the number of (further independent) external constraints to be
imposed on some of the rate coefficients. In [9], only P − (N − L)) + δ = P − S is
considered to be the number of constraints and in [6], the deficiency is not taken into
account in this sum. Thus, our Eq. (17) is a common generalization of the equations
by Feinberg and Colquhoun et al.

4 Discussion, open problems

We have provided a method to transform the most common ion channel models into a
model where mass-conservation is taken into account. Using the theorem by Feinberg
we have also shown that the heuristic method happens to lead to the same results, in
spite of the fact that it is based on imprecise assumptions.

All the original models in question have a rectangular grid structure with zero
deficiency, and all the transformed models have a deficiency equal to the number of
independent circuits in the original model. To put it another way, the sum of defi-
ciency and the number of independent circuits is invariant under our transformation.
The natural question arises if the same consequences can be drawn with nonzero defi-
ciency (and nonzero number of independent circuits, respectively) and what can be
said about reactions having an FHJ-graph of different structure. The widest possible
generalization of detailed balance has been presented by [12] of which the biological
applications are yet missing.
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Appendix: Reactions of rectangular grid structure

Let us consider a special class of reversible compartmental systems with species con-
structed from D ∈ N different atoms, say, G1, G2, . . . , G D , sitting on a receptor
which will be omitted as it plays no rule in the calculations. Let us represent the spe-
cies G1

x1
G2

x2
. . . G D

xD
by the vector (x1, x2, . . . , xD) ∈ N

D
0 , and suppose (this is the

speciality of the system) that we only have the following reaction steps in terms of the
atomic representation of the species:

(x1, x2, . . . , xD) � (x1, x2, . . . , xd−1, xd + 1, xd+1, . . . , xD) (18)

(0 ≤ xd ≤ pd − 1, pd ∈ N; d = 1, 2, . . . , D).

This means that the Feinberg–Horn–Jackson graph (FHJ graph) of the reaction is a
rectangular grid in the first orthant with

∏D
d=1(pd + 1) vertex.

Such kind of reactions are often used when modeling ion channels see Fig. 8 or [7].
Realizing that atoms are not conserved in the above reaction, we try to improve it

by constructing a model without this fault but reflecting the same physical reality. In
order to do so we have to introduce D new, single-atom species, Gd (d = 1, 2, . . . , D)

and the new reaction steps

ed + (x1, x2, . . . , xD) � (x1, x2, . . . , xd + 1, . . . , xD), (19)

where ed is the dth element of the standard base.
To test if a general reaction is detailed balanced or not one has to write down δ

number of circuit conditions and K number of spanning forest conditions in terms
of the reaction rate constants which form a set of necessary and sufficient conditions
together.

If we are interested in detailed balancing of the first reaction (18) we should rather
transform it to (19) and have only the spanning forest conditions. The astonishing fact,
however, is that for these special reactions not only the number of conditions are the
same, but the conditions themselves, as well.

Let us use the following notations:

N : the number of complex vectors (the number of vertices)
P : the number of reaction pairs (the number of edges)
L : the number of linkage classes (the number of connected components)
S : the dimension of the stoichiometric space

(the number of independent reaction steps)
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δ : the deficiency
K : the number of independent circuits

To get some experience with this kind of systems we summarize the essential char-
acteristics of these systems in two and three dimensions and then formulate and prove
the general formula.

Statement 1 If D = 2 then the formulas for system (18) (left column) and system
(19) (right column) are the following:

N = (p + 1)(q + 1) N ′ =2(p + q) + 3pq
L =1 L ′ = p + q + pq
S = N − 1 S′ = S
δ = N − L − S = 0 δ′ = N ′ − L ′ − S′ = K
K = P − (N − L) = pq K ′ = P ′ − (N ′ − L ′) = 0

where P = P ′ = p(q + 1) + (p + 1)q.
If D = 3 then the formulas are

N = (p + 1)(q + 1)(r + 1) N ′ =2(p+q+r)+3(pq+ pr +qr)+4pqr
L =1 L ′ = (p + q + r)+(pq + pr + qr) + pqr
S = N − 1 S′ = S
δ =0 δ′ = K
K = pq + pr + qr + 2pqr K ′ =0

where P = P ′ = p(q + 1)(r + 1) + (p + 1)q(r + 1) + (p + 1)(q + 1)r , see Fig. 8a,
b as an illustration.

Theorem 2
1. The essential characteristics of reactions (18) (with its FHJ-graph as a rectangular

grid) and (19) are as follows.

N =
D∏

d=1

(pd + 1) N ′ =
D∑

k=1

(k + 1)pd1 pd2 . . . pdk

L =1 L ′ =
D∑

k=1

pd1 pd2 . . . pdk

S = N − 1 S′ = S
δ =0 δ′ = K

K =
D∑

k=2

(k − 1)pd1 pd2 . . . pdk K ′ =0

where each sum is taken with the restrictions 1 ≤ d1 < d2 < · · · < dk ≤ D.
2. The circuit conditions for reaction (18) are exactly the same as the spanning tree

conditions for reaction (19).
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Proof In both systems the number of edges can be calculated as

P = P ′ = p1(p2 + 1) . . . (pD + 1) + (p1 + 1)p2(p3 + 1) . . . (pD + 1) + · · · +
+(p1 + 1) . . . (pD−1 + 1)pD

=
D∑

k=1

kpd1 pd2 . . . pdk (1 ≤ d1 < d2 < · · · < dk ≤ D)

The number of independent circuits in a graph can be calculated as K = P −(N − L).
Thus, using that N = 1 + L ′, we obtain the formula for K :

K = P − (N − L) = P − N + 1 = P − L ′

=
D∑

k=1

kpd1 pd2 . . . pdk −
D∑

k=1

pd1 pd2 . . . pdk

The formulas for N ′ and L ′ follow from the following observation: in the graph of the
transformed system the number of components consisting of one edge (and two verti-
ces) is p1+p2+· · ·+pD; the number of components consisting of two edges (and three
vertices) is p1 p2 + p1 p3 +· · · pD−1 pD; etc.; the number of components consisting of
D edges (and D +1 vertices) is p1 p2 . . . pD . The equality S = S′ and the equivalence
of the circuit conditions and spanning forest conditions follow from the D dimensional
version of the lemma. Finally, using that S′ = S = N − 1 = L ′, δ′ = N ′ − L ′ − S′
and K ′ = P ′ − (N ′ − L ′), we obtain the formulas for δ′ and K ′. �	
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